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Mathematics has a long history of application in Biology, as exemplified by the activities of the
ESMTB. Well recognised sub-fields of Mathematical Biology have emerged in areas ranging from
ecology to cancer. In the same way that biological and clinical understanding has progressed with
the use of mathematics in these areas, so too may it advance the field of neuroscience, such as in the
diagnosis and treatment of disorders, including epilepsy and schizophrenia, which are accompanied
by differences in brain dynamics. Compared to some other areas of Mathematical Biology, the field
of Mathematical Neuroscience is in its infancy. This mini-symposium will introduce some of the
challenges and hot-topics in this field and show how these can be tackled using techniques drawn
from a wide variety of mathematical disciplines including stochastic processes, dynamical systems
theory, and machine learning. The first talk by Susanne Ditlevsen will provide a perspective talk
suitable for newcomers, as well as showcase the use of stochastic processes for understanding the
spiking behaviour of neural networks and inferring visual processes. Subsequent talks will focus on
applications to brain disorders and understanding neural rhythms. Krasimira Tsaneva-Atanasova
will talk about the challenge of developing bio-markers for schizophrenia, making use of dynamical
systems techniques for the analysis of human movement. The third talk by Elif Ersöz will show
how the theory of canards can be used to great effect in understanding mixed-mode oscillations
that are ubiquitous in brain rhythms. The fourth talk by Forrester will discuss synchronisation
patterns elicited by Transcranial Magnetic Stimulation, with application in depression. The aim
of this mini-symposium is to raise the profile of Mathematical Neuroscience within the ESMTB
community, and encourage more Mathematical Biologists to contribute to this exciting field.
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A fundamental question concerning the way the visual world is represented in our brain is
how cortical cells respond when their classical receptive fields contain more than a single
stimulus object. It is a statistically challenging problem how to infer such behavior and
distinguish between different explanatory models from neurobiological data. Particular
challenges are that data are partially observed, highly noisy and autocorrelated. A standard
way to deal with noisy data is to average over trials. In this talk I will argue that this might
blur or entirely remove essential characteristics and mechanisms, which are fundamental for
understanding brain function. For a single cell, two opposing models have been proposed
in the literature. In the response-averaging model [15], the firing rate of the cell to a pair
of stimulus objects is a weighted average of the firing rates to the individual objects. By
contrast, in the probability-mixing model [1], the cell responds to the pair of objects as if
only one of the objects was present in any given trial. I will compare the abilities of the
two models to account for spike trains recorded from single cells in the middle temporal
visual area of rhesus monkeys, using point process techniques. The results support the
probability-mixing model [8].

The next natural question to ask is how a population of neurons responds to multiple stim-
uli. This is related to a long debated question in psychology of whether the processing
mechanism in visual search is serial or parallel [2]. I will present some measures to dis-
tinguish between the different processing mechanisms, and suggest different models that
can account for simultaneously recorded spike trains in prefrontal cortex of rhesus monkeys
while processing task-relevant visual displays [9]. I will discuss how the different models
offer different underlying assumptions on how the brain works.



Monday, July 23rd, 12:00 Room: C8.2.06

Minisymposium: Mathematical Neuroscience

INDIVIDUAL MOTOR SIGNATURES AND
SOCIO-MOTOR BIOMARKERS IN SCHIZOPHRENIA

Krasimira Tsaneva-Atanasova

k.tsaneva-atanasova@exeter.ac.uk

University of Exeter
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Human movement has been studied for decades, and dynamic laws of motion that are
common to all humans have been derived. Yet, every individual moves differently from
everyone else (faster/slower, harder/smoother, etc.). We propose an index of such variability,
namely an individual motor signature (IMS) able to capture the subtle differences in the
way each of us moves. We show that the IMS of a person is time-invariant and that
it significantly differs from those of other individuals [13]. Furthermore, in an effort to
establish reliable indicators of schizophrenia we have developed a method that could detect
deficits in movement and social interactions, both characteristics of the disorder. We asked
people to perform movements alone, and to mirror the movements of a computer avatar or a
humanoid robot. Using mathematical modelling and statistical learning techniques we were
able to distinguish people with schizophrenia from healthy participants with accuracy and
specificity slightly better than clinical interviews and comparable to tests based on much
more expensive neuroimaging methods [14]. This methodology could help with diagnosis of
schizophrenia and other related psychiatric conditions such as psychosis and potentially to
also monitor patients’ responses to therapeutic treatment.
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The term “mixed-mode oscillations” (MMOs) is used to describe the dynamics that com-
bine small-amplitude oscillations and large-amplitude oscillations. MMOs arise in multiple-
timescale systems with at least two slow variables and a folded critical manifold [3]. The
pivotal role of the folded singularities and associated canard structures in shaping these
complex dynamics has been identified in many models of biological rhythms. Mixed-mode
bursting oscillations (MMBOs) can appear in four-dimensional (4D) systems with two slow
and two fast variables as a combination of folded-node type dynamics following fast oscil-
lations of bursting type [4]. In this work we focus on a rate model that accounts for the
spontaneous activity in the developing spinal cord of the chicken embryo [16]. The dynam-
ics is that of a classical square-wave burster, with alternation of silent and active phases.
Tabak et al. [16] have proposed two different three-dimensional (3D) models with variables
representing average population activity, fast activity-dependent synaptic depression and
slow activity-dependent depression of two forms. In [17, 18, 19] various 3D combinations of
these four variables have been studied further to reproduce rough experimental observations
of spontaneous rhythmic activity. In this talk, we first show the spike-adding mechanism via
canards in one of these 3D models from [16] where the fourth variable is treated as a control
parameter. Then we discuss how a canard-mediated slow passage in the 4D model explains
the sub-threshold oscillatory behavior which cannot be reproduced by any of the 3D mod-
els. Finally, we relate the canard-mediated slow passage to the intervals of burst and silent
phase which have been linked to the blockade of glutamatergic or GABAergic/glycinergic
synapses over a wide range of developmental stages [17].
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Transcranial Magnetic Stimulation (TMS) is a non-invasive method of provoking significant
changes in mental states. While TMS has proven itself as a treatment for depression,
schizophrenia and chronic pain, the neurological mechanisms behind the alleviation of these
symptoms is poorly understood. TMS perturbs neurons by inducing a current along axons,
facilitating excitatory activity and entraining neurons to synchrony. It is thought that this
can fix disrupted functional connectivity that causes major depression, by activating the
neural ‘switch’ that allows the brain to shift between two major brain subnetworks: the
default mode and central executive networks [20].

Using a neural-mass model [21], we study the influence of TMS on networks of connected
brain regions comprising millions of neurons. The model is particularly suited to studying
TMS since simulated dynamics accommodate underlying neural population synchrony, yet
within a course-grained framework appropriate for the modelling of macroscopic neural
systems. Furthermore, connectivity is defined using human DTI data so that networks are
neurologically relevant. In this way, the model comprises dynamics on a neuronal level as
well as the much greater scale of whole-brain connectivity. This allows us to understand how
stimulation of one brain region can affect how neurons interact in other parts of the brain,
which may elucidate how TMS can work as a treatment for major depression. In particular,
we use the metric of phase coherence to investigate how TMS can evoke new patterns of
synchrony in the network model that relate to the switching between resting (default mode)
and stimulated (central executive) network states, a proxy for the functional behaviour that
would be expected in the brain of a healthy person. Graph theoretic methods of node
centrality and clustering are employed to give a qualitative analysis of how the functional
network has changed due to TMS.

Changing the parameters of TMS delivery (frequency, amplitude, target region etc.), we ex-
plore how different methods of stimulation affect resultant functional networks and speculate
which of these may relate to TMS ‘fixing’ an irregular connectivity.
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